Superconductivity in layered pnictides BaIr$_2$P$_2$ and BaRh$_2$P$_2$

DAIGOROU HIRAI, TOMOHIRO TAKAYAMA, Dept. of Advanced Materials, Univ. of Tokyo, RYUJI HIGASHINAKA, HIROKO ARUGA-KATORI, Riken, HIDENORI TAKAGI, Dept. of Advanced Materials, Univ. of Tokyo — The exploration of new superconductors, triggered by the discovery of LaFeAs(O,F), has concentrated mostly on Fe-based pnictides. A variety of non-Fe pnictides, isostructural to Fe pnictide superconductors, have been known for a long time but not yet fully explored in terms of possible superconductivity. Further exploration of non-Fe pnitide superconductors is important for understanding the key factors in realizing the high T_c in the Fe pnictides. We report new Ir and Rh pnictide superconductors, isostructural to BaFe$_2$As$_2$, BaRh$_2$P$_2$ and BaIr$_2$P$_2$, with $T_c = 1.0$ and 2.1 K respectively. This discovery demonstrates the presence of superconductivity over a surprisingly broad range of transition metal compounds with ThCr$_2$Si$_2$-type structure from Fe to Ir.