Lower Critical Fields and the Anisotropy in PrFeAsO$_{1-y}$ Single Crystals

RYUJI OKAZAKI, Department of Physics, Kyoto University, Kyoto 606-8502, Japan, MARCIN KONCZYKOWSKI, C.J. VAN DER BEEK, Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128, Palaiseau, France, TOMONARI KATO, KEN-ICHIRO HASHIMOTO, MASAAKI SHIMOZAWA, HIROAKI SHISHIDO, MINORU YAMASHITA, TAKASADA SHIBAUCHI, Department of Physics, Kyoto University, Kyoto 606-8502, Japan, MOTOYUKI ISHIKADO, SHIN-ICHI SHAMOTO, Quantum Beam Science Directorate, JAEA, Tokai, Naka, Ibaraki 319-1195, Japan, HIJIRI KITO, AKIRA IYO, HIROSHI EISAKI, Quantum Beam Science Directorate, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, YUJI MATSUDA, Department of Physics, Kyoto University, Kyoto 606-8502, Japan, Laboratoire des Solides Irradiés, Ecole Polytechnique, 91128, Palaiseau, France

By utilizing miniature Hall-sensor array, we evaluated the lower critical fields H_{c1} in Fe-based oxipnictide PrFeAsO$_{1-y}$ single crystals for $H \parallel c$ and $H \parallel ab$-planes. The temperature dependence of H_{c1} for $H \parallel c$ is well scaled by the in-plane penetration depth and is consistent with a full-gap superconducting state. The anisotropy of penetration depths at low temperatures is estimated to be $\simeq 3$, which is much smaller than that of coherence lengths. This indicates the multiband superconductivity, in which the active band for the superconductivity is more anisotropic.