Magneto-transport Study on the nanometer-scaled quantum-ring interferometer made of Al$_x$Ga$_{1-x}$N/GaN heterostructures

WEN-YUAN PANG, IKAI LO, YU-CHI HSU, YEN-LIANG CHEN, MING-HONG GAU, YUNG-HSI CHANG, YING-CHIEH WANG, JIH-CHEN CHIANG, Department of physics, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China, JEN-KAI TSAI, Department of electronic engineering, National Formosa University, Yunlin, Taiwan, ROC — The quantum-ring interferometer has been proposed for spintronic application. The Al$_x$Ga$_{1-x}$N/GaN samples were grown on GaN-template buffer layer by plasma-assisted molecular beam epitaxy. We obtained the mobility and carrier density of two-dimensional electron gas to be 19845 cm2/Vs and 5.18x1012 cm$^{-2}$ by conventional van der pauw Hall measurement at temperature of 4.2 K, respectively. The samples were used to fabricate quantum-ring field-effect-transistors with different widths of conducting channel by Focus Ion Beam. The magneto-resistance measurement at temperature of 0.35 K and magnetic field up to 12 T was performed on these samples. The electronic characterization of nanometer-scaled quantum-ring made of high-mobility Al$_x$Ga$_{1-x}$N/GaN heterostructures has been studied.

The project is supported by the grant number NRC 95-2112-M-110-017-MY3 and FA4869-07-1-4022.