Energy Relaxation of Hot Dirac Fermions in Graphene

WANG-KONG TSE, University of Texas, Austin; University of Maryland, College Park, SANKAR DAS SARMA, University of Maryland, College Park — We develop a theory for the energy relaxation of hot Dirac fermions in graphene. We obtain a generic expression for the energy relaxation rate of hot Dirac fermions in graphene due to electron-phonon interaction and calculate the power loss due to both optical and acoustic phonon emission as a function of electron temperature T_e and density n. We find an intrinsic power loss weakly dependent on carrier density and non-vanishing at $n = 0$, originating from interband electron-optical phonon scattering from the intrinsic electrons in the graphene valence band. We also obtain the total power loss per carrier to be $\sim 10^{-12} - 10^{-7} \text{W}$ within the range of electron temperatures $\sim 20 - 1000 \text{K}$, finding that the temperature for the optical phonon emission to overtake acoustic phonon emission as the dominant energy loss mechanism ranges $\sim 200 - 300 \text{K}$ for $n = 10^{11} - 10^{13} \text{cm}^{-2}$.

1This work is supported by US-ONR, NSF-NRI, and SWAN SRC.

Wang-Kong Tse
University of Texas, Austin