Scaling of the Island Density, Size Distribution and Capture Numbers in 3D Nucleation and Growth1 JOHN ROYSTON, JACQUES AMAR, University of Toledo — The results of kinetic Monte Carlo (KMC) simulations of a model of the irreversible nucleation and growth of fractal islands in 3D are presented along with a comparison with rate-equation (RE) results and mean-field (MF) theory. In previous work for point-islands in 3D it was found that both the scaled island-size distribution (ISD) and capture-number distribution (CND) approach the MF prediction of a diverging ISD and size-independent CND in the limit of large D/F (where D is the monomer diffusion rate and F is the deposition rate). In contrast, here we find that the divergence of the ISD with increasing D/F is much weaker for the case of fractal islands while the scaled CND $C(s/S)$ (where S is the average island size) is not constant but increases linearly with island size s. We also find that the exponent χ describing the dependence of the peak island-density on D/F (e.g. $N_{pk} \sim (D/F)^{-\chi}$) deviates significantly from the standard prediction $\chi = 1/3$. Self-consistent RE results for the average island and monomer densities which give good agreement with simulations are also presented, along with an analytical expression for the exponent χ.

1Supported by NSF DMR-0606307

Jacques Amar
University of Toledo

Date submitted: 19 Nov 2008 Electronic form version 1.4