Localized 5\textit{f} antiferromagnetism in cubic UIn$_3$: 115In-NMR/NQR Study

H. SAKAI, S. KAMBE, Y. TOKUNAGA, H. CHUDO, Japan Atomic Energy Agency, Y. TOKIWA1, D. AOKI2, Osaka University, Y. HAGA, Japan Atomic Energy Agency, Y. ÔNUKI3, Osaka University, H. YASUOKA, Japan Atomic Energy Agency

115In nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on an antiferromagnet UIn$_3$ with the cubic AuCu$_3$-type structure. The NQR frequency (ν_Q) and Knight shift (K) of 115In in UIn$_3$ have been estimated in the paramagnetic state from NMR experiments under applied field. The perpendicular component of transferred hyperfine coupling constant (A_\perp) has been deduced from scaled behavior of K to the static susceptibility (χ). Under zero field, the observation of the NQR spectrum has led to an estimated ν_Q of 11.8 MHz at 90 K. The temperature variation of the NQR relaxation rates ($1/T_1$) far above the Néel temperature T_N=88 K approaches a constant value, which indicates a localized nature for the 5\textit{f} electrons in this system.

On the other hand, in the antiferromagnetically ordered state at 4 K (well below T_N), the 115In-NMR spectrum has been scanned over frequencies ranging from \sim20 to \sim70 MHz under zero applied field. From the analysis of the NMR spectrum, we propose that the direction of U moments in the AF state is neither $\langle 100 \rangle$ nor $\langle 111 \rangle$, but may be $\langle 110 \rangle$.

1Present Affiliation: Georg-August- Universität Göttingen
2Present Affiliation: CEA-Grenoble
3Also at: Japan Atomic Energy Agency

Hironori Sakai
Japan Atomic Energy Agency

Date submitted: 30 Nov 2008 Electronic form version 1.4