Abstract Submitted for the MAR09 Meeting of The American Physical Society

Localized 5f antiferromagnetism in cubic UIn₃: 115 In-NMR/NQR Study H. SAKAI, S. KAMBE, Y. TOKUNAGA, H. CHUDO, Japan Atomic Energy Agency, Y. TOKIWA¹, D. AOKI², Osaka University, Y. HAGA, Japan Atomic Energy Agency, Y. ONUKI³, Osaka University, H. YASUOKA, Japan Atomic Energy Agency — ¹¹⁵In nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements have been performed on an antiferromagnet UIn₃ with the cubic AuCu₃-type structure. The NQR frequency (ν_Q) and Knight shift (K) of ¹¹⁵In in UIn₃ have been estimated in the paramagnetic state from NMR experiments under applied field. The perpendicular component of transferred hyperfine coupling constant (A_{\perp}) has been deduced from scaled behavior of K to the static susceptibility (χ) . Under zero field, the observation of the NQR spectrum has led to an estimated $\nu_{\rm Q}$ of 11.8 MHz at 90 K. The temperature variation of the NQR relaxation rates $(1/T_1)$ far above the Néel temperature $T_N=88$ K approaches a constant value, which indicates a localized nature for the 5f- electrons in this system. On the other hand, in the antiferromagnetically ordered state at 4 K (well below $T_{\rm N}$), the ¹¹⁵In-NMR spectrum has been scanned over frequencies ranging from ~20 to ~ 70 MHz under zero applied field. From the analysis of the NMR spectrum, we propose that the direction of U moments in the AF state is neither $\langle 100 \rangle$ nor $\langle 111 \rangle$, but may be $\langle 110 \rangle$.

¹Present Affiliation: Georg-August- Universität Göttingen

²Present Affiliation: CEA-Grenoble ³Also at: Japan Atomic Energy Agency

> Hironori Sakai Japan Atomic Energy Agency

Date submitted: 30 Nov 2008 Electronic form version 1.4