Abstract Submitted for the MAR09 Meeting of The American Physical Society

Q-domains in Multiferroic CoCr₂**O**₄ THOMAS A. KAPLAN, Michigan State University — In spinel CoCr₂O₄, the observed spin state at low temperature is, approximately, a "ferrimagnetic spiral"¹, given by² $\mathbf{S}_{\mathbf{n}\nu} = \sin \theta_{\nu} [\hat{\mathbf{x}} \cos(\mathbf{Q} \cdot \mathbf{R}_{\mathbf{n}\nu} + \gamma_{\nu}) + \hat{\mathbf{y}} \sin(\mathbf{Q} \cdot \mathbf{R}_{\mathbf{n}\nu} + \gamma_{\nu})] + \cos \theta_{\nu} \hat{\mathbf{z}}$. $\nu = 1 \cdots 6$ goes over the six magnetic fcc sublattices, $\mathbf{R}_{\mathbf{n}\nu}$ are the positions of the magnetic ions, $\hat{z} = [001]$ crystallographic direction, θ_{ν} are the cone half-angles on which the spins lie, and γ_{ν} are the phases of the 6 conical spirals, all with wave vector \mathbf{Q} in the [110] direction. This yields magnetization \mathbf{M} ,¹ and, via the Katsura et al mechanism³, electric polarization \mathbf{P} .⁴ Equivalent \mathbf{Q} 's, e.g. $\pm \mathbf{Q}$, with associated \mathbf{M} 's and \mathbf{P} 's, are expected to give degenerate states, " $\mathbf{Q} - \mathbf{M} - \mathbf{P}$ domains"; poling in electric and magnetic fields selects a single such domain. Reversal of magnetic field then leads to \mathbf{P} reversal^{4,5} and \mathbf{Q} reversal⁵. But $\mathbf{Q} \rightarrow -\mathbf{Q}$ in the equation above does not appear to give a degenerate state. I show, via the Heisenberg model and the Generalized Luttinger-Tisza method used in the prediction of the spin state,² that $\gamma_{\nu} \rightarrow -\gamma_{\nu}$ on \mathbf{Q} reversal, making manifest the $\mathbf{Q} \rightarrow -\mathbf{Q}$ degeneracy.

¹N. Menyuk et al., J. de Physique **25**, 528 (1964)

²D. H. Lyons et al., Phys. Rev. **126**,540 (1962)

³H. Katsura et al., Phys. Rev. Lett. **95**, 057205 (2005)

⁴Y. Yamasaki et al., Phys. Rev. Lett. **96**, 207204 (2006)

⁵Y. J. Choi et al, submitted for publication

Thomas A. Kaplan Michigan State University

Date submitted: 22 Nov 2008

Electronic form version 1.4