Understanding of Nuclear Quadruple Interaction of 19F* and Binding Energies of Solid Fluorine at the First-Principles Level

D.R. MISHRA, M.M. ARYAL, TU, Kirtipur,Kathmandu, Nepal, N.P. ADHIKARI, TU, Kirtipur, Kathmandu, Nepal, S.R. BADU, R.H. PINK, SUNY Albany, R.H. SCHEICHER, Uppsala University, Sweden, LEE CHOW, UCF Orlando, T.P. DAS, SUNY Albany — We have studied the binding energy (BE) and nuclear quadrupole interaction (NQI) parameters for the 19F* excited nuclear state in solid fluorine as part of our investigation [1] of the properties of solid halogens using the first principles Hartree-Fock Cluster procedure combined with many-body perturbation theory (MBPT), implemented by the Gaussian 03 set of programs. Our results show that Van der Waals interaction obtained from intermolecular electron correlation has dominant effect on the BE but negligible effect on the NQI parameters. For the latter, our $e^2 qQ$ is 117.7MHz for $Q(^{19}$F*), 0.072 *10$^{-28}$m2 [2] and η is essentially zero.. The influence of vibrational effects on $e^2 qQ$ is being investigated using a first-principles procedure [3] to bridge the small remaining difference with experiment.

Lee Chow
UCF Orlando

Date submitted: 19 Nov 2008