Nanopatterning as a Probe of Unstable Growth on GaAs(001)\(^1\)

KRISTA COSERT, CHUAN-FU LIN, AJMI HAMMOUDA, University of Maryland, HUNG-CHIH KAN, National Chung-Cheng University, Taiwan, ROC, KANAKARAJU SUBRUMANIAM, CHRIS RICHARDSON, Laboratory for Physical Sciences, RAY PHANEUF, University of Maryland — We report on observations of unstable growth on nanopatterned GaAs(001) surfaces. For growth at 500\(^\circ\)C, 1 ML/sec and an As\(_2\)/Ga beam equivalent pressure ratio of 10:1, we find that grooves oriented at right angles to [\(\overline{1}10\)] produce a build up of ridges of GaAs at the upper edges, while for grooves oriented at right angles to [\(1\overline{1}0\)] no ridges form; instead cusps evolve at the bottoms of such grooves \(^{[1]}\). The cusp-forming grooves show a pronounced initial amplification of depth during growth which changes with length/width ratio, and become more narrow. The ridge-forming grooves instead broaden during growth. We compare these experimental observations with kinetic Monte Carlo simulations in which a small anisotropic Ehrlich-Schwoebel barrier is included. \(^{[1]}\) T. Tadayyon-Eslami, H.-C. Kan, L. C. Calhoun and R. J. Phaneuf, Phys. Rev. Lett. \textbf{97}, 126101 (2006)

\(^1\)Work supported by NSF #DMR0705447, LPS and the UM-MRSEC # DMR0520471.

Ray Phaneuf
University of Maryland

Date submitted: 22 Nov 2008
Electronic form version 1.4