Two Different Types of Single Crystal Morphologies of the γ-Phase and Their Conversion in Isotactic Polypropylene

YAN CAO, RYAN VAN HORN, CHI-CHUN TSAI, MATTHEW GRAHAM, KWUANG-UN JEONG, CLAUDIO DE ROSA, BERNARD LOTZ, STEPHEN Z.D. CHENG — In the past, the crystallographic relationship between the γ-phase and the α-phase in isotactic polypropylene was extensively studied via oligomers of iPP. We attempt to investigate how the crystal morphological changes take place in the γ-phase using high molecular weight iPP-co-polyethylene samples. Due to the specific epitaxial growth of the γ-phase on the elongated α-phase single crystals, two different morphologies were identified via transmission electron and atomic force microscopies. The first γ-phase crystal morphology is needle-like. Selective area electron diffraction results showed that their \[110\] or \[110\] zone axis was parallel to the thin film normal. The growth of this type of epitaxial γ-phase crystal was due to the stem direction in the initial α-phase single crystal being parallel to the thin film normal. The second γ-phase crystal morphology was flat lamellae. This requires that the initial α-phase single crystal had to have a stem orientation tilted away from the thin film normal. Therefore, the sufficient and necessary condition for the γ-phase morphological conversion from the needle-like crystal to the flat crystal is the change of the stem orientation direction of the initial α-phase single crystals.

Yan Cao

Date submitted: 30 Nov 2008 Electronic form version 1.4