Abstract Submitted for the MAR09 Meeting of The American Physical Society

Dielectric Relaxation of PVDF/STN Nanocomposites¹ LEI YU, PEGGY CEBE — Dielectric relaxation behavior of poly(vinylidene fluoride), PVDF, with Lucentite TM STN nanoclay was investigated over the frequency range from 20 Hz to 1MHz. LucentiteTM STN synthetic nanoclay is based on hectrite structure with an organic modifier contained between the hectrite layers. Composition of the PVDF/STN nanocomposites ranged from 0%-10% STN by weight. Wide angle X-ray and Fourier transform infrared spectroscopy results are consistent with the conclusion that pure alpha phase is formed in PVDF film while STN 1% sample contained majority beta phase, and a tiny amount of alpha phase. When the STN content increased to 5% and 10% only the beta phase was observed. The α_a (glass transition) and α_c (crystalline) relaxation rates were plotted against the reciprocal of temperature, respectively. The dielectric result shows that the relaxation rate of the α_a relaxation, related to the motions of amorphous polymer chains, is increased by the addition of STN. However, the activation energy for the α_c relaxation, related to motions of the crystalline chains, remained unchanged with STN addition. A mechanism is proposed to interpret the relative position and interaction between PVDF chains and STN

¹Research supported by the National Science Foundation, Polymers Program of the Division of Materials Research grant DMR-0602473.

Lei Yu

Date submitted: 19 Nov 2008

Electronic form version 1.4