Abstract for an Invited Paper for the MAR09 Meeting of The American Physical Society

Interface electrostatics in ferroelectric capacitors from first principles MASSIMILIANO STENGEL, UCSB

Capacitors based on ferroelectric perovskites are potentially attractive for applications in nanoelectronics, such as non-volatile randomaccess memories and high-permittivity gate dielectrics. Thin-film geometries are sought after for optimal efficiency and information storage density. However, in such a regime, strong size effects arise that generally deteriorate the overall performance of the device. Understanding the properties of the oxide/electrode interface is crucial to overcoming these deleterious effects. In this talk I will present our recently-developed methodologies for working at fixed electric displacement field in first-principles density-functional calculations. I will show that application of fixed-D methods to ferroelectric capacitors provides enhanced flexibility for the study of interface-specific issues. I will demonstrate this technique by presenting results for a range of systems based on PbTiO₃ or BaTiO₃ as ferroelectric, and Pt or SrRuO₃ as electrode. Based on a microscopic analysis of interface bonding and electrostatics, I will discuss possible routes to the realization of devices that are free from size effects.