On d-Wave Superconductors with a Zeeman or Exchange Splitting of the Spin-Up and –Down Fermi Surfaces1 CHIA-REN HU, Texas A&M University — For a given Zeeman (or exchange) energy \(h \), we used the Fermi-surface splitting, \(\delta \mu \), as a variational parameter, and showed: (1) For an s-wave superconductor, the Sarma state is actually an \textit{unstable} equilibrium state, which is known to exist for \(0.5 < h < 1 \) only, and has energy \textit{higher} than the un-polarized BCS state and the normal state. (2) For a d-wave superconductor, the Sarma-like state can actually \textit{exist} down to \(h \sim 0 \), and is a \textit{stable} equilibrium state up to some \(h_{\text{max}} \), if not considering other possible deformations of the order parameter (possibly symmetry breaking, such as going toward the FFLO state, which is known to exist at higher \(h \) only), and its energy is \textit{lower} than those of the un-polarized BCS state and the normal state. (3) The state can be further improved by introducing more variational parameters, which are still not symmetry-breaking. Thus we predict that for CeCoIn\textsubscript{5} and other d-wave superconductors the \textit{low-field} superconducting state in a magnetic field parallel to the layers should already show some bulk spin-polarization, \textit{and} \(d \) is \textit{not} the usual un-polarized BCS state.

1The author acknowledges some summer support from Texas Center for Superconductivity at the University of Houston.