Abstract Submitted for the MAR09 Meeting of The American Physical Society

Ab Initio Torsion-Wag Surface for the Ethyl Radical¹ RAM S. BHATTA, DAVID S. PERRY, Department of Chemistry, The University of Akron — The torsion-wag potential of the ethyl radical has a 6-fold barrier to internal rotation and the minimum energy path involves deviations of the CH₂ wag angle of 6 to 11 degrees on either side of planar. Partially optimized 2-dimensional surfaces were calculated at the B3LYP, MP2, and CCSD(T) levels with 6-311++G(d,p) and 6-311++G(3df, 2p) basis sets and they were fit to a function containing a polynomial in the wag angle τ and trigonometric functions of the torsional angle α . Comparison is made with the corresponding surfaces for CH₃NH₂ and CH₃OH₂⁺. Unlike CH₃CH₂[•], both have a substantial barrier to inversion. The dominant torsionwag coupling term in all three cases has the form $\tau \cos 3\alpha$.

¹The work was supported by the Office of Basic Energy Sciences, Office of Energy Research, U.S. Department of Energy under Grant No. DE-FG02-90ER14151.

David S. Perry Department of Chemistry, The University of Akron

Date submitted: 20 Nov 2008

Electronic form version 1.4