Abstract Submitted
for the MAR09 Meeting of
The American Physical Society

Novel positive magnetoresistance in lightly doped La$_2$CuO$_4$

I. RAJČEVIĆ, D. POPOVIĆ, Dept. of Phys. & Natl. High Magnetic Field Lab., Florida State Univ., C. PANAGOPoulos, Dept. of Phys., Univ. of Crete and FORTH & Div. of Phys. & Applied Phys., Nanyang Technological Univ., T. SASAGAWA, Materials & Structures Lab., Tokyo Inst. of Technology — We have measured magnetoresistance (MR) in single crystals of La$_{1.97}$Sr$_{0.03}$CuO$_4$ and La$_2$Cu$_{0.97}$Li$_{0.03}$O$_4$ at temperatures $0.05 \leq T(K) \leq 70$ and fields $0 \leq B(T) \leq 18$ parallel and perpendicular to the c-axis. Our study reveals an unusual, low-field positive MR in both in-plane and c-axis transport in both materials and for both B orientations. However, while the positive c-axis MR may persist up to $T$ as high as 40 K, the large positive in-plane MR occurs only at very low $T \ll T_{sg}$ ($T_{sg}$ – spin glass transition temperature). In that regime, where the noise spectroscopy disclosed slow and correlated charge dynamics [1], both the in-plane and c-axis positive MR exhibit signatures of glassiness, such as memory and hysteresis. We discuss the possible mechanism responsible for this novel low-field positive MR that appears to be intimately related to the emergence of the charge glass dynamics. [1] I. Rajčević et al., Phys. Rev. Lett. 101, 177004 (2008).

$^1$Supported by NSF No. DMR-0403491, NHMFL via NSF No. DMR-0654118, EURYI scheme, MEXT-CT-2006-039047 and the National Research Foundation of Singapore.

I. Rajčević
Dept. of Phys. & Natl. High Magnetic Field Lab., Florida State Univ.

Date submitted: 20 Nov 2008

Electronic form version 1.4