Effects of Co substitution on thermodynamic and transport properties and anisotropic H_{c2} in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$.1 NI NI, M. E. TILLMAN, J-Q. YAN, A. KRACHER, S. L. BUD’KO, P. C. CANFIELD, Ames Lab / Iowa State University, S. T. HANNAHS, NHMFL, Tallahassee — Single crystal samples of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$, $x < 0.12$, have been characterized by microscopic, thermodynamic and transport measurements. With increasing Co concentration, the features of the structural and magnetic transitions are suppressed at a rate of roughly 15K per percent of Co. Superconductivity is stabilized at low temperatures for $0.038 \leq x$ and up through our highest doping level of $x = 0.114$. The superconducting region has a dome like appearance with maximum T_c values (~ 23 K) found near $x \sim 0.07$. The $T - x$ phase diagram shows that either the existence of superconductivity in both the tetragonal and the orthorhombic (AFM) phase or there is a structural phase separation. Anisotropic H_{c2} data clearly show that the superconductivity which occurs in samples that show features associated with the transition to the low temperature orthorhombic state is 50% smaller than that found in samples that remain in the tetragonal phase. These data show that the superconductivity is sensitive to the suppression of the higher temperature phase transition.

1Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

Paul Canfield
Ames Lab / Iowa State University

Date submitted: 20 Nov 2008