Glassy effects in magnetotransport in $\text{La}_{1.97}\text{Sr}_{0.03}\text{CuO}_4$ thin films1

X. SHI, J. JAROSZYŃSKI, D. POPOVIĆ, Dept. of Phys. & Natl. High Magnetic Field Lab., Florida State Univ., C. PANAGOPoulos, Dept. of Phys., Univ. of Crete and FORTH & Div. of Phys. and Appl. Phys., Nanyang Tech. Univ., G. LOGVENOV, A. BOLLINGER, I. BOZOVIC, Brookhaven Natl. Lab. — We have studied the in-plane magnetoresistance (MR) in atomically smooth, MBE grown $\text{La}_{1.97}\text{Sr}_{0.03}\text{CuO}_4$ thin films. The MR was measured at temperatures between 0.6 K and 8 K and in B up to 9 T, both parallel and perpendicular to the c-axis. The MR exhibits strong dependence on magnetic field history, such as hysteresis and memory at low T, similar to the results on c-axis transport in single crystal samples [1]. Here, however, the difference between field-cooled and zero-field cooled MR vanishes above $T \sim 5$ K, independent of the magnitude and orientation of B. Low T resistance noise measurements also will be discussed. The results suggest that the glassiness observed in the films may also originate from the slow charge dynamics at low temperatures. [1] I. Rašević, et. al., PRL 101, 177004 (2008).

1Supported by NSF No. DMR-0403491, NHMFL via NSF No. DMR-0654118, US DOE project MA-509-MACA, EURYI Scheme, MEXT-CT-2006-039047 and the National Research Foundation of Singapore.

Xiaoyan Shi
Dept. of Phys. & Natl. High Magnetic Field Lab., Florida State Univ.

Date submitted: 20 Nov 2008