Direct measurement of charge transfer and spin state transitions in thermoelectric Ca$_3$Co$_4$O$_9$

GUANG YANG, University of Illinois at Chicago, QUENTIN RAMASSE, National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, ROBERT KLIE, University of Illinois at Chicago — The misfit-layered thermoelectric material Ca$_3$Co$_4$O$_9$ has been the focus of many recent studies due to its high thermal power and good high temperature stability. In particular, it has been suggested that the presence of a mixed valence state in the strongly correlated CoO$_2$ layer is essential for the high p-type thermoelectric properties in Ca$_3$Co$_4$O$_9$. In this study, we combine aberration-corrected scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to study the atomic and electronic structures of Ca$_3$Co$_4$O$_9$. We will show that the position of the O atomic columns in the CoO$_2$ layers are highly ordered and can therefore be directly imaged, while the CoO columns in the Ca$_2$CoO$_3$ rocksalt layer exhibit a strong modulation in the (010) direction. Further, we measure the local Co valence and find significant hole transfer from the rocksalt CoO to the strongly correlated CoO$_2$ layers. In addition, we will present the results of our in-situ heating experiments of Ca$_3$Co$_4$O$_9$ [010] at 500 K, which show that the phase transition at 420 K is not accompanied by a structural transition but rather a transition of the Co-ion spin states.

Guang Yang
University of Illinois at Chicago