Abstract Submitted for the MAR09 Meeting of The American Physical Society

Non-Fermi-liquid behavior in nearly ferromagnetic SrIrO₃ single crystals¹ T.F. QI, S. CHIKARA, O.B. KORNETA, S. PARKIN, L.E. DE LONG, G. CAO, University of Kentucky, P. SCHLOTTMANN, Florida State University — We report magnetic, electric transport, and calorimetric properties of single-crystal SrIrO₃ as a function of temperature T and applied magnetic field H. We find that SrIrO₃ is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small saturation moment and no evidence for long-range order down to 1.7 K, (2) strongly enhanced magnetic susceptibility that diverges as T^{γ} at low temperatures with $1/2 < \gamma < 1$, depending on the applied field, (3) heat capacity $C(T,H) \sim -T \ln T$ that is readily enhanced in low applied fields, and (4) $T^{3/2}$ dependence of electrical resistivity over the range 1.7 K< T < 120 K. The data imply SrIrO₃ is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point (T=0 and $\mu_0 H=0.23$ T). The results will be presented and discussed along with these of a similar system CaRuO₃.

¹This work was supported by NSF through grant DMR-0552267

T.F. Qi University of Kentucky

Date submitted: 20 Nov 2008

Electronic form version 1.4