Non-Fermi-liquid behavior in nearly ferromagnetic SrIrO$_3$ single crystals

T.F. Qi, S. Chikara, O.B. Korneta, S. Parkin, L.E. De Long, G. Cao, University of Kentucky, P. Schloottmann, Florida State University

We report magnetic, electric transport, and calorimetric properties of single-crystal SrIrO$_3$ as a function of temperature T and applied magnetic field H. We find that SrIrO$_3$ is a non-Fermi-liquid metal near a ferromagnetic instability, as characterized by the following properties: (1) small saturation moment and no evidence for long-range order down to 1.7 K, (2) strongly enhanced magnetic susceptibility that diverges as T^{γ} at low temperatures with $1/2 < \gamma < 1$, depending on the applied field, (3) heat capacity $C(T,H) \sim -T\ln T$ that is readily enhanced in low applied fields, and (4) $T^{3/2}$ dependence of electrical resistivity over the range 1.7 K $< T <$ 120 K. The data imply SrIrO$_3$ is a rare example of a stoichiometric oxide compound that exhibits non-Fermi-liquid behavior near a quantum critical point ($T=0$ and $\mu_0H=0.23$ T). The results will be presented and discussed along with those of a similar system CaRuO$_3$.

\hspace{1cm} 1This work was supported by NSF through grant DMR-0552267