Abstract Submitted for the MAR09 Meeting of The American Physical Society

Reentrant ferroelectricity and the multiferroic phase diagram of $Mn_{1-x}Fe_xWO_4$ RAJIT CHAUDHURY, BERND LORENZ, YAQI WANG, YANYI SUN, CHING CHU, TCSUH and Department of Physics, University of Houston, Houston, Texas 77204-5002, USA — Recently MnWO₄ has attracted attention because of its multiferroic properties. In $MnWO_4$ the Mn^{2+} ions can be substituted by Fe^{2+} since MnWO₄ and FeWO₄ are isomorphic. This opens the possibility to tune the magnetic orders by Fe-substitution for a better understanding of the microscopic interactions resulting in the multiferroic properties. We report the discovery of reentrant ferroelectricity in the phase diagram of multiferroic $Mn_{1-x}Fe_xWO_4$ single crystals. At zero magnetic field (H) the spin-spiral ferroelectric (FE) state is completely suppressed at Fe substitutions (x) exceeding 0.04. For $x_i 0.04$ a ferroelectric phase exists in a narrow temperature (T) range at zero magnetic field. This FE phase shows a reentrant behavior at lower T above a critical magnetic field $H_c(x)$. The reentrant FE transition is explored by polarization, dielectric constant, and magnetization measurements. The complete multiferroic x-T-H phase diagram of $Mn_{1-x}Fe_xWO_4$ is derived.

> Rajit Chaudhury TCSUH and Department of Physics, University of Houston, Houston, Texas 77204-5002, USA

Date submitted: 01 Dec 2008

Electronic form version 1.4