Molecular structure of virgin and T_g cycled ($\text{Ag}_2\text{Se})_x\ (\text{AsSe})_{1-x}$ bulk glasses1 JACOB WACHTMAN, PING CHEN, P. BOOCHAND, University of Cincinnati — AsSe, the base glass ($x = 0$) in the titled ternary, is an interesting example of a chalcogenide that is partially de-mixed into As_4Se_4 molecules segregated from a connected AsSe network, with the latter determining glass network properties. Raman scattering reveals sharp modes of the Realgar molecules that are superimposed on broad modes coming from of the backbone. Upon T_g cycling virgin samples (as quenched melts), the concentration of de-mixed As_4Se_4 molecules decreases, suggesting that thermally induced polymerization occurs; molecules break up to form part of the connective tissue. Modulated DSC experiments reveal a broad exotherm near 140 °C in virgin samples, which becomes nearly extinct in T_g cycled samples. The exotherm may represent Realgar molecules nano-crystallizing as the temperature approaches T_g. Compositional trends in thermal parameters such as $T_g(x)$, $\Delta C_p(x)$, and the $\Delta H_{nr}(x)$ as a function of Ag$_2$Se content ‘x’ of the glasses will be reported.

1This work was supported by NSF Grant DMR 04-56472.