Hall effect in magnetic semiconductor InMnSb epitaxial thin films
NIKHIL RANGARAJU, NIDHI PARASHAR, BRUCE WESSELS, Materials Research Center and Department of Materials Science and Engineering, Northwestern University — The magnetotransport properties of ferromagnetic $In_{1-x}Mn_xSb$ semiconductor films with $x=0.01$ to 0.035 were measured from 1.5 K to 298K and magnetic fields up to 18T. The vapor phase epitaxial films are p-type with a hole concentration of 10^{19}cm^{-3} and mobility of $10^2 \text{cm}^2/\text{Vs}$. The Hall resistivity is described by the equation $\rho_{xy} = R_0B + R_AM$ where R_0 and R_A are the normal and anomalous hall coefficients, B is the applied magnetic field and M is the magnetization. The films exhibited an anomalous Hall effect over entire temperature range. It was observed that R_A is proportional to the longitudinal resistivity (ρ_{xx}) leading to a magnetoresistance dependant Hall voltage.