Abstract Submitted for the MAR09 Meeting of The American Physical Society

Systematic enhancement in magnetic susceptibilities and a study of Fermi Liquid behaviour of ReT_2Al_{10} where Re=Y and La, and T =Fe, Ru, and Os^1 KEESEONG PARK, YURI JANSSEN, MOOSUNG KIM, Brookhaven National Laboratory, CARLOS MARQUES, Stony Brook University, MEIGAN ARONSON, Brookhaven National Laboratory — DC and AC magnetic susceptibilities, specific heat and resistivity are measured for YbFe₂Al₁₀-structure compounds, $\operatorname{ReT}_2\operatorname{Al}_{10}$ where $\operatorname{Re} = Y$, and La, and $T = \operatorname{Fe}$, Ru, and Os. The $\operatorname{YT}_2\operatorname{Al}_{10}$ show systematically enhancing paramagnetic behavior in magnetic properties from Os to Ru and to Fe, and Fermi-liquid behaviour below around 100 K. With the linear term of the specific heat (γ_0) and the temperature independent susceptibility (χ_0) at low temperature, the Stoner enhancement parameter, Z, is utilized to find how close the compounds are to the ferromagnetic ordering, where $Z = 1 - (3\mu_B^2/\pi^2 k_B^2)(\gamma_0/\chi_0)$. Specifically, YFe_2Al_{10} shows a larger Z (0.98) than that (0.83) of Pd, a well known example of nearly ferromagnetic materials. The implied proximity to the quantum criticality is tested by a power law analysis , where $1/(\chi - \chi_0) = AT^{\lambda}$ can describe well a wide range (2K to 100K) of AC magnetic susceptibility for YFe₂Al₁₀ with $\lambda =$ 1.19, which is between the mean-field value ($\lambda = 1$) and that of the three-dimensional Ferromagnetic Heisenberg model ($\lambda = 1.33$).

¹Work at Brookhaven performed under the auspices of the Department of Energy Office of Basic Energy Science

> Keeseong Park Brookhaven National Laboratory

Date submitted: 20 Nov 2008

Electronic form version 1.4