Experimental determination of the dipolar field in Mn$_{12}$-acetate1

SEAN MCHUGH, R. JAAFAR, M.P. SARACHIK, City College of New York, Y. MYASOEDOV, H. SHTRIKMAN, E. ZELDOV, The Weizmann Institute of Science, R. BAGAI, G. CHRISTOU, University of Florida - Gainesville — Crystals of the molecular magnet Mn$_{12}$-acetate are known to contain a small fraction of defect (minor species) molecules with a small anisotropy barrier against spin reversal. The lower barrier leads to faster magnetic relaxation and lower coercive field. We exploit the low coercive fields of the minor species, and the location of the minor species tunneling resonances, to make a direct determination of the dipole field in Mn$_{12}$-ac. We find that the dipolar field of a fully magnetized crystal is 51.5 ± 8.5 mT, consistent with theoretical expectations.

1Work at CCNY supported by NSF grant DMR-00451605.