Abstract Submitted for the MAR09 Meeting of The American Physical Society

Understanding the surface reconstruction during chemical switching of ultrathin PbTiO₃ films from density functional theory¹ JUN HE, BRIAN STEPHENSON, SERGE NAKHMANSON, Argonne National Laboratory — First-principles calculations are used to understand the structure and energetics of the newly discovered 4×1 surface reconstruction that forms under reducing conditions during chemical switching of the ferroelectric polarization in ultrathin films of PbTiO₃ with SrRuO₃ bottom electrodes coherently strained to SrTiO₃ (001). Relaxed surface structures are obtained for polar films with various oxygen stoichiometries in the outermost PbO layer. To model the behavior of many-unitcell thick films, which are observed to have polarizations near the bulk value, the lowest unit cell(s) of the PbTiO₃ film are forced to be polar. The observed surface reconstructions are compared with experimental synchrotron x-ray measurements.

¹Work supported under contract No. DE-AC02-06CH11357 between UChicago Argonne, LLC and the Department of Energy

> Jun He Argonne National Laboratory

Date submitted: 20 Nov 2008

Electronic form version 1.4