Abstract Submitted for the MAR09 Meeting of The American Physical Society

Growth and characterization of the $La_{0.67}Sr_{0.33}MnO_3$ nanowires JUGDERSUREN BATTOGTOKH, 1,2, SUNGMU KANG, 2, ROBERT S. DIP-IETRO, DONALD HEIMAN, 3, ANDREW C. BUECHELE, 2, IAN L. PEGG, JOHN PHILIP, 1,2, 1.DEPARTMENT OF PHYSICS, THE CATHOLIC UNI-VERSITY OF AMERICA, WASHINGTON, DC 20064 TEAM, 2. VITREOUS STATE LABORATORY, THE CATHOLIC UNIVERSITY OF AMERICA TEAM, 3. DEPARTMENT OF PHYSICS, NORTHEASTERN UNIVERSITY, BOSTON, MA 02115 COLLABORATION — Conventional electrospinning method provides a simple approach to synthesis polymer nanowires. In this work, we report the growth, structural characterization, and magnetic properties of half-metallic, ferromagnetic $La_{0.67}Sr_{0.33}MnO_3$ (LSMO) alloy nanowires that are first time grown on Si/SiO₂substrates by the electrospinning method. Electrospun nanowires are annealed in an ultra-high purity argon-hydrogen gas mixture. Uniform, continuous, high aspect ratio LSMO nanowires with diameters in the range of 60–300 nm and lengths up to 500 μm are grown. The temperature dependent magnetization behavior of LSMO nanowires shows ferromagnetic behavior, and symmetric hysteresis loops are observed with magnetic fields applied to the substrate at 10 K and 300 K. Finally, we will discuss the spin dependent electrical transport properties of the single LSMO nanowire.

Jugdersuren Battogtokh

Date submitted: 15 Dec 2008

Electronic form version 1.4