Coherent Graphene Devices: Movable Mirror, Buffer and Memory

L. ZHAO, Department of Physics, University of Connecticut, Storrs, CT 06269, S. F. YELIN, Department of Physics, University of Connecticut, Storrs, CT 06269; ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 — We theoretically report that, at a sharp electrostatic step potential in graphene, massless Dirac fermions can obtain a Goos-Hänchen-like shift under total internal reflection. Based on these results, we study the coherent propagation of the quasiparticles along a sharp graphene p-n-p waveguide and derive novel dispersion relations for the guided modes. Consequently, coherent graphene devices (e.g. movable mirror, buffer and memory) induced only by the electric field effect can be proposed.

1We would like to acknowledge funding from NSF.