Abstract Submitted for the MAR09 Meeting of The American Physical Society

Optical Conformational Transition Pathways of DsRed, Elucidated by Polarization-Modulated Fourier Imaging Correlation Spectroscopy ANDREW MARCUS, ERIC SENNING, GEOFFREY LOTT, University of Oregon, MICHAEL FINK, Omega Optical, Inc — This work presents a novel 'phase-selective' approach to fluorescence fluctuation spectroscopy that simultaneously determines the joint probability distributions and two-dimensional spectral densities of protein conformational transitions, and nanometer center-of-mass displacements. Fourier imaging correlation spectroscopy (FICS) combines polarizationand intensity-modulated photo-excitation with phase-sensitive signal detection to monitor the collective coordinate fluctuations from a large population of fluorescent molecules (N \sim 106). FICS is based on the principle that fluctuations of partially averaged molecular coordinates can be monitored through variations of an optical signal phase. Experiments are performed on DsRed, a tetrameric complex of fluorescent protein subunits, derived from a reef-building coral. Thermally induced conformational transitions of the DsRed complex lead to fluctuations in the optical dipolar coupling between adjacent chromophore sites. An analysis of polarization-resolved FICS fluctuation data, in terms of two-dimensional spectra and joint probability distributions, provides detailed information about cooperative 'transition pathways' between distinct dipole-coupled DsRed conformations.

> Andrew Marcus University of Oregon

Date submitted: 20 Nov 2008

Electronic form version 1.4