Binding energy of 3He to dislocations in solid 4He

DEBAJIT GOSWAMI, KINJAL DASBISWAS, CHI-DEUK YOO, ALAN T. DORSEY, Department of Physics, University of Florida — Recent heat capacity experiments on solid 4He [1] show a peak in the specific heat which is interpreted as the signature of the supersolid transition. We pursue an alternative explanation for the heat capacity feature in which 3He impurities desorb from dislocations in solid 4He; the peak temperature scales with the binding energy of 3He to dislocations in 4He. Within a continuum elastic model for solid 4He, we make quantum mechanical estimates for the binding energy, using a combination of variational and numerical methods. We find for a short distance cut-off of one lattice constant of 4He, the binding energy is about 70 mK for edge and 60 mK for a screw dislocation.

This work is supported by the NSF.