Abstract Submitted for the MAR09 Meeting of The American Physical Society

The effect of self-assembled monolayers on graphene conductivity and morphology T. L. MOORE, J. H. CHEN, B. RIDDICK, E. D. WILLIAMS¹, University of Maryland, College Park — Graphene transport properties are limited by charge defects in SiO_2 , and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO_2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO₂. Surface free energies of the monolayers and the SiO₂ blank have been computed from static contact angle measurements and all decrease the SiO₂surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO₂. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.

¹Funded by Laboratory for Physical Sciences and MRSEC University of Maryland

Tracy Moore University of Maryland, College Park

Date submitted: 20 Nov 2008

Electronic form version 1.4