A magnetic field-induced crossover to a non-universal regime in a Kondo dot

ANDREI KOGAN, TAI-MIN LIU, BRYAN HEMINGWAY, University of Cincinnati, STEVEN HERBERT, Xavier University, MICHAEL MELLOCH, Purdue University, UNIVERSITY OF CINCINNATI TEAM, XAVIER UNIVERSITY COLLABORATION, PURDUE UNIVERSITY COLLABORATION — We have measured the magnetic splitting, \(\Delta_K \), of a Kondo peak in the differential conductance of a Single-Electron Transistor while tuning the Kondo temperature, \(T_K \), along two different paths in the parameter space: varying the dot-lead coupling at a constant dot energy, and vice versa. At a high magnetic field, \(B \), the changes of \(\Delta_K \) with \(T_K \) along the two paths have opposite signs, suggesting that \(\Delta_K \) is not a universal function of \(T_K \). At low \(B \), we observe a decrease in \(\Delta_K \) with \(T_K \) along both paths. Detailed \(\Delta_K(B) \) data for two different \(T_K \) show consistency for the splitting onset. Furthermore, we find \(\Delta_K/\Delta < 1 \) at low \(B \) and \(\Delta_K/\Delta > 1 \) at high \(B \), where \(\Delta \) is the Zeeman energy of the bare spin. We discuss an approximate scaling of \(\Delta_K \) with \(B/T_K \) at low \(B \) and compare the findings to previous measurements and theory.

\(^1\)The research is supported by NSF DMR award No. 0804199 and by University of Cincinnati.

Tai-Min Liu
University of Cincinnati

Date submitted: 20 Nov 2008