Abstract Submitted for the MAR09 Meeting of The American Physical Society

Large-scale circulation and Nusselt number in turbulent rotating Rayleigh-Bénard convection.¹ JIN-QIANG ZHONG, UCSB, RICHARD STEVENS, U. Twente, HERMAN CLERCX, Eindhoven U. Tech., DETLEF LOHSE, U. Twente, GUENTER AHLERS, UCSB — We present measurements of the large-scale circulation (LSC) and the Nusselt number Nu of turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1 and rotated about a vertical axis at a rate Ω . The side-wall temperatures at eight equally spaced azimuthal positions in the horizontal mid- plane were fit to a cosine function that gave the azimuthal LSC orientation $\theta(t)$ (t is the time), the temperature amplitude $\delta(t)$, and the rms amplitude $\delta T(t)$ of the fluctuations about the fits. The LSC precessed in an azimuthal direction opposite to that of the imposed rotation. The precession rate $\omega = d\theta/dt$ showed a sharp transition at a Rossby number $Ro^* \simeq 2.5$. As Ω increased, $< \delta(t) >_t$ decreased and $< \delta T(t) >_t$ increased beginning at Ro^* . At Ro^* Nu began to increase with increasing Ω . At high $Ro |\omega|$ was proportional to but much smaller than Ω .

¹Work at UCSB supported by NSF Grant DMR07-02111.

Jin-Qiang Zhong UCSB

Date submitted: 20 Nov 2008

Electronic form version 1.4