Tunable Metallicity at the Surface of La$_{5/8}$Ca$_{3/8}$MnO$_3$ Thin Films

KENJI FUCHIGAMI, Oak Ridge National Laboratory / The Univ. Tennessee, ZHENG GAI, Oak Ridge National Laboratory, THOMAS Z. WARD, Oak Ridge National Laboratory / The Univ. Tennessee, LIFENG YIN, PAUL SNIJDERS, Oak Ridge National Laboratory, WARD PLUMMER, The Univ. Tennessee / Louisiana State University, JIAN SHEN, Oak Ridge National Laboratory / The Univ. Tennessee — A series of in-situ STM studies of La$_{5/8}$Ca$_{3/8}$MnO$_3$(001) thin film reveals that the surface metallicity can be tuned by extrinsic oxygen doping at the surface. By in-situ annealing with or without oxygen, we can convert the surface back and forth between a (\AA,2 × \AA,2)R45 reconstructed surface and a (1 × 1) surface. Electrical properties of the surfaces are investigated by scanning tunneling spectroscopy (STS). I-V curves clearly show that the oxygen doping renders the surface insulating while the (1 × 1) surface without the oxygen doping is metallic. Structural models and their correlation to the surface metallicity have been proposed.

1Supported in part by the Division of Materials Science and Engineering, U. S. DOE. KF and EWP have also received support from NSF and DOE (DMS&E) (NSF-DMR-0451163).

Jian Shen
Oak Ridge National Lab

Date submitted: 23 Nov 2008

Electronic form version 1.4