Order and Creep in Flux Lattices and CDWs Pinned by Planar Defects ALEKSANDRA PETKOVIC, THOMAS NATTERMANN, Institute of Theoretical Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany — The influence of randomly distributed point impurities and planar defects on the order and transport in type-II superconductors and related systems is considered theoretically. For random planar defects of identical orientation the flux line lattice exhibits a new glassy phase with diverging shear and tilt modulus, a transverse Meissner effect, large sample to sample fluctuations of longitudinal magnetic susceptibility and an exponential decay of translational long range order. The flux creep resistivity for currents J parallel to the defects is $\rho(J) \sim \exp\left(-\frac{J_0}{J}\right)^\mu$ with $\mu = 3/2$. Strong disorder enforces an array of dislocations to relax shear strain.