The Effects of Bio-functionalization on Solid-state Nanopore Transport – Theory and Experiments on DNA1 YALING LIU, ABHIJIT RAMACHANDRAN, Department of Mechanical and Aerospace Engineering, SAMIR M. IQBAL, Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington — Solid-state nanopore channels have been reported recently to show selectivity for various target bio-molecules. The surfaces of nanopore channels are functionalized to achieve such selectively. The organic molecule coatings alter the behavior of molecular transport as well as change surface energies, chemical and physical properties, and make these more bio-compatible. We present theoretical considerations of DNA-modified nanopore channels which treat the functional molecules on the surface as a combination of series of potential sites. The potential function depends on the physical interactions of two ssDNA molecules. The simulated DNA trajectories and translocation speeds under various test conditions are consistent with the reported experimental data.

1This work is supported by University of Texas at Arlington Research Enhancement Program.

SAMIR IQBAL
University of Texas at Arlington

Date submitted: 20 Nov 2008