Abstract Submitted for the MAR09 Meeting of The American Physical Society

BCS-BEC crossover in an optical lattice¹ PARAG GHOSH, University of Illinois, Urbana Champaign, ROBERTO DIENER, MOHIT RANDERIA, Ohio State University — We model fermions with an attractive interaction in an optical lattice with a single-band Hubbard model away from half-filling with on-site attraction U and nearest neighbor hopping t. We use a large N theory with Sp(2N) symmetry to study the fluctuations beyond mean field theory. At T = 0, we calculate across the crossover various observables, including chemical potential, gap, ground state energy, speed of sound and compressibility. The superfluid density ρ_s is found to have non-trivial U/t dependence in this lattice system. We show that the transition temperature T_c scales with the energy gap in the weak coupling limit but crosses over to a t^2/U scaling in the BEC limit, where phase fluctuations controlled by ρ_s determine T_c .

¹Supported by ARO grant W911NF-08-1-0338.

Parag Ghosh University of Illinois, Urbana Champaign

Date submitted: 20 Nov 2008

Electronic form version 1.4