Abstract Submitted for the MAR09 Meeting of The American Physical Society

Anisotropic magnetoresistance of a one-dimensional superconducting niobium strip¹ JIONG HUA*, ZHILI XIAO*, ALEXANDRA IMRE, SUHONG YU*, UMESH PATEL*, LEO OCOLA, RALU DIVAN, ALEXEI KOSHELEV, JOHN PEARSON, ULRICH WELP, WAI-KWONG KWOK, Argonne National Laboratory, *Northern Illinois University — We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross-section. When the strip's transverse dimensions are comparable to the superconducting coherence length, we find the angle dependent magentoresistances at a fixed temperature can be scaled as $R(\theta, H) = R(H / H_{c\theta})$ where $H_{c\theta} = H_{c0}$ $(\cos^2\theta + \gamma^{-2}\sin^2\theta)^{-1/2}$ is the angular dependent critical field, $\gamma = w/d$ is the width to thickness ratio of the strip, and H_{c0} is the out-plane critical field at $\theta = 0^{\circ}$. Our results can be understood in terms of the anisotropic diamagnetic energy of a one-dimensional superconductor in a magnetic field.

¹This work is supported by NSF Grant No. DMR-0605748 and by DOE, under contract DE-AC02-06CH11357, Award DE-FG02-06ER46334.

Jiong Hua Argonne National Laboratory

Date submitted: 20 Nov 2008

Electronic form version 1.4