Investigation of Electrically Driven Phase Transition in Magnetite Thin Films

ALEXANDRA A. FURSINA, Department of Chemistry, Rice University, 6100 Main st. Houston, TX, 77005, R.G. SUMESH SOFIN, IGOR V. SHVETS, CRANN, School of Physics, Trinity College, Dublin 2, Ireland, DOUGLAS NATELSON, Department of Physics and Astronomy, Rice University, 6100 Main st. Houston, TX, 77005 — Magnetite, Fe$_3$O$_4$, is an example of strongly electronically correlated system. It undergoes so called Verwey transition at $T_V \sim 122$ K accompanied both by structural distortion and drastic decrease in electrical conductivity, i.e. metal-insulator transition. Recently, we discovered a new electrically driven phase transition in magnetite nanoparticles and thin films. We observed that a low-temperature (T below T_V) insulating state is broken upon applying an electric field, resulting in a sharp transition to the state with much higher conductivity. We report on further electrical characterization of this newly discovered state. There is a question whether this state is the same as high-temperature phase above T_V or this is a new state of magnetite. In standard two-terminal measurement dominant contribution of contact resistance impedes intrinsic electrical properties. Thus, four-terminal configuration is necessary. Electrical and magnetoresistance properties are measured in challenging four-terminal geometry at nanoscale.

1A. F. and D. N. acknowledge financial support from the US Department of Energy grant DE-FG02-06ER46337.

Alexandra A. Fursina
Department of Chemistry, Rice University, 6100 Main st. Houston, TX, 77005

Date submitted: 23 Nov 2008

Electronic form version 1.4