Abstract Submitted for the MAR09 Meeting of The American Physical Society

Growth and superconductivity of $FeSe_x$ crystals¹ ZHILI XIAO*, UMESH PATEL*, SUHONG YU*, HELMUT CLAUS, VITALII VLASKO-VLASOV, SEVDA AVCI*, JOHN SCHLUETER, ULRICH WELP, WAI-KWONG KWOK, Argonne National Laboratory, *Northern Illinois University — Stimulated by the recent discovery of high temperature superconductivity in ferrous pnictides, other iron-based planar compounds have been revisited to search for superconductivity. The most promising outcome of this effort is the discovery of superconductivity in alpha - $FeSe_x$ which is less toxic but has a $FeSe_4$ tetrahedra planar crystal sublattice similar to that consisting FeAs₄ in the oxypnictides. Investigations on the superconductivity in $FeSe_x$ can shed light on the superconducting mechanism in oxypnictides. We report the growth of $FeSe_x$ crystals through a vapor self-transport approach. Both tetragonal and hexagon shaped $FeSe_x$ crystals with a lateral dimension of up to a few millimeters were obtained and their superconductivity was investigated with both magnetization and resistive measurements. We systematically explored the effect of synthesis parameters such as Fe/Se ratio, sintering temperature and cooling rate on the quality of the crystals.

¹This work is supported by DOE, under contract DE-AC02-06CH11357, Award DE-FG02-06ER46334, and by NSF Grant No. DMR-0605748.

Zhili Xiao Argonne National Laboratory

Date submitted: 23 Nov 2008 Electronic form version 1.4