Abstract Submitted for the MAR09 Meeting of The American Physical Society

Magnetoelectric effects in SrRuO₃/BaTiO₃ heterostructures: A First Principles Study M.K. NIRANJAN, J.D. BURTON, S.S. JASWAL, E.Y. TSYMBAL, University of Nebraska, Lincoln, USA, J.P. VELEV, University of Puerto Rico, San Juan, USA — Ferroelectric materials in combination with ferromagnets have emerged as structures in which strong magnetoelectric coupling may exist originating from unconventional physical mechanisms. The use of oxides such as $SrRuO_3$ as a metal electrode has been found to be of fundamental importance for the realization of ferroelectric films with critical thicknesses down to three unit cells. Here we present a study of $SrRuO_3/BaTiO_3$ heterostructures within the framework of density functional theory. This heterostructure is interesting since $SrRuO_3$ is a weak ferromagnetic oxide metal and hence, when used as an electrode on $BaTiO_3$, presents the possibility of coupling between electric and magnetic order parameters. In particular we study the magnetoelectric (ME) effect at the interface of $SrRuO_3$ /BaTiO₃ by treating $SrRuO_3$ as spin polarized metal. We find that magnetic properties at the interface are affected as the ferroelectric polarization in the $BaTiO_3$ is reversed. We discuss the origins of ME effect and compare them with previously proposed ME coupling mechanisms in Fe/BaTiO₃, Fe₃O₄/BaTiO₃, and SrRuO₃/SrTiO₃ heterostructures^{1,2}. ¹Niranjan et al., Phys. Rev. B, 78, 140405 (2008); ²Rondinelli et al., Nat. Nanotechnology, **3**, 46, (2008)

> Manish Niranjan University of Nebraska, Lincoln, USA

Date submitted: 20 Nov 2008

Electronic form version 1.4