Vibrational spectroscopic study of newly developed self-forming lipids and nanovesicles. RAJAN BISTA, REINHARD BRUCH, University of Nevada, Reno, Nevada, USA — We present the first experimental study of self-forming synthetic nanovesicles, trademarked as QuSomesTM, using vibrational spectroscopic techniques namely near-infrared (NIR) and laser tweezers Raman spectroscopy. Raman spectra of these new artificial nanovesicles suspended in Phosphate Buffered Saline (PBS) have been obtained by using an inverted confocal laser-tweezers-Raman-microscopy system in the spectral range of 3100 to 500 cm$^{-1}$. This spectrometer works with an 80 mW diode-pumped solid-state laser, operating at a wavelength of 785 nm in the TEM$_{00}$ mode. The laser is used both for optical trapping and Raman excitation. Similarly, NIR absorption spectra of these novel nanovesicles have been recorded in the spectral range of 9000-4800 cm$^{-1}$ by using a new miniaturized micro-mirror spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In this work, we have found that the most prominent bands in the studied spectral region of Raman spectra are dominated by vibrational modes arising from C-C and CH$_2$ bonds. Similarly, NIR spectra are primarily assigned as first and second overtone of C-H stretching mode and second overtone of C=O stretching mode. These spectroscopic techniques have proven to be an excellent tool to establish the fingerprint region revealing the molecular structure and conformation of QuSomesTM nanoparticles.

Rajan Bista
University of Nevada, Reno, Nevada, USA

Date submitted: 20 Nov 2008

Electronic form version 1.4