Abstract Submitted for the MAR09 Meeting of The American Physical Society

First-principles theory of phase stability, solvus boundaries, and coherency strain in LAST (lead-antimony-silver-telluride) and in other doped AgSbTe₂ thermoelectric alloys¹ SERGEY V. BARABASH, VIDVUDS OZOLINS, UCLA, CHRIS WOLVERTON, Northwestern University — Bulk telluride alloys are promising thermoelectrics [e.g. the figure of merit (ZT) of LAST (AgPb_mSbTe_{2+m}) alloys was reported^{*} to exceed $ZT \sim 2$]. Recent theoretical examination⁺ found that precipitation of ordered AgSbTe₂ phases in rocksalt PbTe likely contributes to the high ZT of LAST, and predicted that the isoplethal PbTe-AgSbTe₂ phase diagram includes highly asymmetric miscibility gap. Here we generalize that analysis by first launching a search for unknown (Ag,Pb,Sb)Te nonrocksalt phases (those deviating from the 1:1 cation:anion ratio), and second by presenting an extended analysis of the solubility limits for alloying AgSbTe₂ with PbTe and other tellurides. In particular, we find that the large asymmetry of the PbTe-AgSbTe₂ miscibility gap shares a common physical origin with the substitutional site preference for Pb in ordered AgSbTe₂, and that during coherent precipitation, the coherency strain increases the solubility limits in PbTe-AgSbTe₂ by a factor of ~ 2 relative to the predicted⁺ unstrained bulk values. *K.F. Hsu *et al.*, Science **303**, 818 (2004). +S.V.Barabash et al., Phys.Rev.Lett. 101, 155704

¹supported by NSF under grants No. DMR-0427638 and CBET-0730929 and by the FCRP FENA.

Sergey Barabash UCLA

Date submitted: 20 Nov 2008

Electronic form version 1.4