Abstract Submitted for the MAR09 Meeting of The American Physical Society

Scanning tunneling spectroscopic evidence for a magnetic fieldrevealed microscopic order in the high-T_C superconductor YBa₂Cu₃O_{7- δ^1} A.D. BEYER, M.S. GRINOLDS², M.L. TEAGUE, N.-C. YEH, Physics Dept., Caltech, Pasadena, CA, S. TAJIMA, Physics Dept., Osaka Univ., Japan — We present spatially resolved scanning tunneling spectroscopic measurements of $YBa_2Cu_3O_{7-\delta}$ as a function of magnetic field and at $T \ll T_C$. The observed *intra*-vortex quasiparticle (QP) spectra appear pseudogap (PG)-like, with an energy gap of $V_{PG} \approx 32 \text{meV}$. The value of V_{PG} is significantly larger than the observed *inter*-vortex superconducting (SC) gap, $\Delta_{SC}=20$ meV, and equal to the incommensurate spin fluctuation gap observed by neutron scattering. We also observe a secondary and less pronounced intra-vortex gap at $\Delta' \sim 7$ -10meV. Fourier transformation of QP spectra reveals two sets of non-dispersive, field-enhanced conductance modulations with periods of 3.4+0.5 and 7.3+0.5 lattice constants. Energy histograms of QP spectra show a significant shift from SC to primarily PG-like spectra and a growing enhancement of spectral weight at Δ ' as magnetic field increases, implying a significant interplay between SC and a field-enhanced microscopic order. Ref.: Beyer, et.al. [arxiv:0808.3016].

¹NSF Grant DMR-0405088. ²Currently at Physics Dept., Harvard, Cambridge, MA

> Andrew Beyer Physics Dept., Caltech, Pasadena, CA

Date submitted: 20 Nov 2008

Electronic form version 1.4