Abstract Submitted for the MAR09 Meeting of The American Physical Society

Coercivity of Melt-Spun $Gd_{100-x}Fe_x^{-1}$ PAUL SHAND, ANDREW MEYER, University of Northern Iowa, DAVID SCHMITTER, Providence College, GEOFFREY ROJAS, JEFFREY SHIELD, JARED GOERTZEN, University of Nebraska-Lincoln, DANIAL HASKEL, Argonne National Laboratory, DIANDRA LESLIE-PELECKY, University of Texas at Dallas — We have measured the coercivity of melt-spun $Gd_{100-x}Fe_x$ ($0 \le x \le 40$) alloys over the temperature range 2 $K \le T \le 340$ K. Previously performed structural measurements revealed that the system consists of crystalline hcp-Gd grains surrounded by a non-crystalline Gd or Gd-Fe phase composed of $Gd_{100-x'}Fe_{x'}$, where x' > x is the iron concentration in the amorphous region. The two-phase structure is responsible for an unusual dependence of the coercivity on temperature in which non-zero coercivity is observed above the hcp-Gd T_c with a peak near 320 K. The coercivity decreases as the hcp-Gd grains order, then increases with decreasing temperature. This behavior is explained by the presence of Fe-rich magnetically correlated regions.

¹Funded by NSF Grants Nos. DMR-0504177 and DMR-0504706

Paul Shand University of Northern Iowa

Date submitted: 20 Nov 2008 Electronic form version 1.4