Abstract Submitted for the MAR09 Meeting of The American Physical Society

Large quasiparticle thermal Hall conductivity in the superconductor $Ba_{1-x}K_xFe_2As_2^{-1}$ JOSEPH CHECKELSKY, LU LI, Princeton University, G.F. CHEN, J.L. LUO, N.L. WANG, Inst. of Physics, Beijing, China, N.P. ONG, Princeton University — We have measured the thermal conductivity κ_{xx} and thermal Hall conductivity κ_{xy} in single-crystal $Ba_{1-x}K_xFe_2As_2$. Below the superconducting transition temperature T_c (~ 30 K), we observe a large peak in the weak-field κ_{xy} . A corresponding peak in the zero-field thermal conductivity κ_{xx} is also observed. Together, these imply the existence of a large population of hole-like quasiparticles below T_c . In magnetic fields H approaching 35 T, the peaks in κ_{xx} are strongly suppressed. A fit of the κ_{xx} vs. H curves shows that the data are consistent with the scattering of long-lived quasiparticles by vortices. Using these fits, we have extracted estimates of the quasiparticle mean-free-path, and separated the zero-field electronic and phononic terms κ_e and κ_{ph} , respectively. We discuss the origin of the large quasiparticle population in terms a strongly anisotropic gap parameter or a gap with nodes.

¹Supported by NSF grant DMR 0213706 and DMR 0819860. Research at IOP is supported by NSFC, 973 project of MOST and CAS of China. High-field experiments were performed at the National High Magnetic Field Laboratory, Tallahassee.

Joseph Checkelsky Princeton University

Date submitted: 24 Nov 2008

Electronic form version 1.4