Abstract Submitted for the MAR09 Meeting of The American Physical Society

Low-temperature states in quasi-one-dimensional charge transfer salt (TMTTF)₂SbF₆ studied by ¹³C NMR under hydrostatic high pressures FUMITATSU IWASE, Institute for Molecular Science, KOICHI SUGIURA, The Graduate University for Advanced Studies, KOU FURUKAWA, TOSHIKAZU NAKAMURA, Institute for Molecular Science — We report ¹³C NMR study of a quasi-one-dimensional charge transfer salt, $(TMTTF)_2SbF_6$, under the application of the hydrostatic pressure. The antiferromagnetic phase transition at ambient pressure was confirmed by the line splitting and the divergent increase of the spin-lattice relaxation rate $1/T_1$. Under \sim 5 kbar, $1/T_1$ deceases abruptly at low temperatures without the enhancement, indicating that the ground state is a spin-gapped phase. However, the decrease of the Knight shift expected for spin-Peierls phase transition has not been observed. We observed additional lines, which split symmetrically, at low temperatures under the pressure of \sim 17 kbar. The possible reentrant antiferromagnetic phases are discussed.

Fumitatsu Iwase Institute for Molecular Science

Date submitted: 21 Nov 2008 Electronic form version 1.4