Effect of N to In flux ratio on the InN surface morphologies grown on single crystal ZnO (000\text{\textsc{t}}) substrate by plasma-assisted molecular beam epitaxy\textsuperscript{1} CHENG-HUNG SHIH, IKAI LO, WEN-YUAN PANG, SHIH-HUNG CHUANG, CHIA-HISUAN HU, Department of physics, National Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C., CHIA-HO HSIEH, Institute of Material Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, —

The surface morphology of InN epitaxial films grown on ZnO (000\text{\textsc{t}}) substrate by plasma-assisted molecular beam epitaxy has been investigated. We found that the evolution of InN surface morphology was sensitive to the N/In flux ratio. With N/In flux ratio decreasing, the growth mode was changing from 3D to 2D growth. In addition, we found that In$_2$O$_3$ layer was formed at the interface between InN and ZnO when the N/In flux ratio was lower than 32 by the observation of XRD and TEM.

\textsuperscript{1}The project is supported by National Research Council of Taiwan (NRC 95-2112-M-110-017-MY3) and by AFOSR/MSOEAR (AFMC, USAF) under grant number FA4869-07-1-4022.