Abstract Submitted for the MAR09 Meeting of The American Physical Society

Fluidization of granular media wetted by liquid ⁴He KAI HUANG, MASOUD SOHAILI, MATTHIAS SCHROETER, STEPHAN HERMINGHAUS, Max Planck Institute for Dynamics and Self-organization — We explore experimentally the fluidization of vertically agitated PMMA spheres wetted by liquid ⁴He at temperatures around the λ point. For wetting by normal fluid helium $(T > T_{\lambda})$, the critical acceleration for fluidization (Γ_c) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For superfluid helium $(T < T_{\lambda})$ wetting, Γ_c starts to increase already at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of unsaturated helium film driven by "fountain effect". Above saturation, Γ_c enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1 K, which we attribute to the influence of the specific heat of liquid helium on capillary bridge formation and rupture.

> Kai Huang Max Planck Institute for Dynamics and Self-organization

Date submitted: 02 Dec 2008

Electronic form version 1.4