Wigner crystal vs. Friedel oscillations in the 1D Hubbard model

STEFAN SOEFFING, Univ. of Kaiserslautern, Germany, MICHAEL BORTZ, Univ. of Kaiserslautern, Germany, SEBASTIAN EGGERT, Univ. of Kaiserslautern, Germany — We investigate the ground state density distribution of the Hubbard model in a finite one-dimensional wire. For weak interactions we find the expected Friedel oscillations, but for low filling a distinct Wigner crystal state can be observed. Although there cannot be a phase transition in a 1D system we observe a well-defined crossover into a Wigner crystal region with different physical behavior even for relatively weak short range interactions. The combination of Luttinger liquid theory and numerical Density Matrix Renormalization Group (DMRG) calculations allows a quantitative analysis of the crossover as a function of system length, lattice filling, and interaction strength.

With special thanks to OPTIMAS and the DFG funded "Transregio 49" and the "graduate school of excellence MATCOR"