Weak localization effects in Al-doped ZnO films PRIYA.V CHINTA*, Q.Y. CHEN*, O. LOZANO*, P.V. WADEKAR*, W.K. CHU, Department of Physics and Texas Center for Superconductivity, University of Houston, TX, S.W. YEH, N.J. HO, Center for Nanoscience and Nanotechnology and Dept of Materials and Optoelectronic Engg, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan, L.W. TU, Y.S. CHANG, W.Y. PANG, I. LO, Center for Nanoscience and Nanotechnology and Dept of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, H.W. SEO, Dept of Physics, University of Arkansas, AR — Metal-semiconductor transitions (MST) at low temperatures were studied for (0001)-oriented Zn$_{1-x}$Al$_x$O thin films deposited by simultaneous RF magnetron sputtering of ZnO and Al onto (11-20)-oriented Al$_2$O$_3$ substrates. The MST occurs at 190K, 102K and 260K for x=2%, 3% and 10% of Al-doping, respectively. The samples display negative magnetoresistance at low temperatures with zero-field electrical resistivity being as low as 3.3×10^{-4} Ω-cm for x=3%. The charge scattering mechanisms below the MST will be discussed in light of weak localization and coulomb interactions due to disorder in the system. *Also with Dept of Physics, NSYSU, Taiwan.

Priya.V Chinta
Department of Physics & Texas Center for Superconductivity,
University of Houston, TX

Date submitted: 25 Nov 2008